
LA-UR-18-25404
Approved for public release; distribution is unlimited.

Title: Debugging Computer Code

Author(s): Budge, Kent Grimmett

Intended for: Parallel Computing Summer School Talk

Issued: 2018-06-20

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Debugging Computer Code

Kent G. Budge
CCS-2, Computational Physics and Methods

Introduction

Debugging? Klingons do not debug. Our software does not coddle the weak.

For the rest of us, finding and removing defects in code is a
fundamental programming skill. Besides preventing code from
performing its intended function, bugs destroy users’ confidence in the
reliability of code even when no errors are obvious.

A through discussion of debugging techniques could easily fill a
semester course in computer science. We have an hour here today.

I will take that time to discuss broad principles rather than fine points of
debugging.

Ancient History

Python? That is for children. A Klingon Warrior uses only machine code, keyed in on the front panel
switches in raw binary.

When I first began programming, in 1976, on a PDP 11/40, there
was no such thing as a symbolic debugger. “Debug by printf” was
not the last resort; it was the only resort, short of repeated code
inspection.

Fortunately, this machine had 128K of core memory, no mechanism
for page swapping, and a disk the size of a washing machine that
held 2 Mbyte of storage.

There simply wasn’t room to cram very many bugs onto this
machine.

(But, man, did it have a beautifully orthogonal instruction set!)

How to Deliver Bug-Free Code

Perhaps it IS a good day to die! I say we ship it!

● Don’t write buggy code.
● Scaffold code during development.
● Test comprehensively.
● Be proficient in using a good symbolic

debugger and heap inspector.
● Close the loop.

Don’t write buggy code

Specifications are for the weak and timid!

● Know what you want your code to do before you write it.

● Compartmentalize, compartmentalize, compartmentalize
– Globals are evil
– Keep functions short and simple
– Program with objects
– Use enumerations and constants rather than magic numbers

● Don’t reinvent the wheel
– Use standard libraries (STL)
– Use reliable third-party libraries

● How do you know it’s reliable?

● Avoid inherently buggy programming techniques
– Case instead of long succession of ifs
– Polymorphism instead of case
– Avoid raw pointers and arrays

Scaffold code during development

● Use modern configuration tools like cmake to switch between debug
and production builds.

● Debug builds should be liberally sprinkled with checks that can
disappear in production builds.
– NDEBUG

● Design by Contract:
– Preconditions
– Postconditions
– Invariants
– Miscellaneous checks

● Production code debugging options
– “Pay to play”

Design by Contract

template <class RandomContainer>

void rotate(RandomContainer &r, RandomContainer &qt, const unsigned n,

 unsigned i, double a, double b)

{

 Require(r.size() == n * n);

 Require(qt.size() == n * n);

 Require(i + 1 < n);

 // … the good stuff ...

 Ensure(r.size() == n * n);

 Ensure(qt.size() == n * n);

}

Test comprehensively

You question the worthiness of my code? I should kill you where you stand!

● Use automated unit testing
– Levelized code

● Use a code coverage tool
– There is almost no point of diminishing return

with code coverage. A code that is 95% covered
is a code that is inadequately tested.

– Coverage by function is a good start. Coverage
by branch must follow.

Actual debugging

● Use a good symbolic debugger.
– Should display objects sensibly.
– Should allow variables to be set by hand in the middle of

a session.
– Should make it easy to pull up the suspect function.
– Should allow conditional breakpoints.

● Use a good memory checker.
– Should detect all out-of-bounds errors.
– All else is frosting.

Isolating bugs

● Think a little before jumping into the debugger.
● Strip input to bare minimum that reproduces the

bug.
● Previous versus head build.
● Beware bug that is actually a feature.
● Restart

When all else fails...

● Fire up the debugger on the minimum failing input.
● Identify a “bug trace” – output or variable value

that betrays the error.
● Close in by bisection.
● Once within a manageable range of code, begin

stepping through code with the bug trace
monitored.

● Peel the onion.

Close the loop

By filing this bug report, you have questioned the honor of my family. Prepare to die!

● “With many eyes, all bugs are shallow”
– Know your customers and talk to them.
– The burden is on you, not them, to isolate the bug.
– No one ever reads the manual.

● Consider open-sourcing your code
– In the LANL environment, there are obvious restrictions on

open sourcing, but it can be done in appropriate cases.

● Every bug report should add at least one new test case
to your test suite.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

